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Summary

To perform a quick analysis or a parameter study of structures under dynamic loads, the structure

is often regarded as a Single Degree of Freedom (SDOF) system with one characteristic deflection.

At the TNO Prins Maurits Laboratory these systems are used as tools for the vulnerability analysis

of the structures of weapon platforms under explosion loads. For naval ships, SDOF techniques are

applied for the internal blast code DAMINEX, for the external blast algorithm CBD, for ship door

researcn and for the research of underwater shock on the hull. Therefore research is done on SDOF

systems, particularly for the response of stiffened panels under large deflections introducing non

linear mechanisms.

This report gathers and explains some general techniques of structural dynamics for SDOF

systems and serves as a basis for the application of the SDOF technique in vulnerability research.

Analytical formulae for the maximum dynamic deflection have been determined, where the deflec-

tions are expressed in general terms for force, mass and stiffness. A general expression for the

Dynamic Load Factor (DLF) is established for linear and non-linear deformation characteristics.

Convenient mathematical approximations have been found for the response curves. New transfor-

mations factors have been derived. The curve for iso-damage based on the Pressure-Impulse

technique is considered as a tool for the scope beyond the DLF.

Parameter studies can be easily performed with the obtained results.

Samenvatting

Het 6n-graad-van-vrijheid model (SDOF) met 6&n karakteristieke verplaatsing, wordt vaak

toegepast wanneer een snelle analyse van een constructie onder dynamische belasting gewenst is.

Op her Prins Maurits Laboratorium worden deze systemen gebruikt als gereedschappen voor het

kwetsbaarheidsonderzoek van constructies van wapenplatformen onder explosiebelasting. Bij mari-

neschepen worden SDOF-technieken toegepast voor de inwendige blastcode DAMINEX, het

uitwendige blast-algoritme CBD, voor het scheepsdeurmodel en voor het onderzoek naar onderwa-

terschok op de huid. Daartoe wordt er onderzoek verricht naar SDOF-systemen, in her bijzonder ten

behoeve van de respons van verstijfde panelen bij grote verolaatsingen, die niet lineair gedrag intro-

duceren.

Dit rapport inventariseert en verklaart enkele algemene technieken van de constructiedynamica voor

SDOF-systemen en dient als een basis voor de toepassing van de SDOF-techniek in her kwetsbaar-

heidsonderzoek. Analytische formules zijn bepaald voor de maximale dynamische verplaatsing,
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waarbij de verplaatsingen zijn uitgedrukt in algemene tertnen zoals kracht, massa en veerstijfhieid.

Een algemene uitdrukking voor de dynamische belastings (DLF) factor is bepaald voor zowel

lineaire als niet-lineaire vervorm-lnpskarakteristieken. lienvoudige mathemnatische benaderingen zijn

bepaald voor responsgrafieken. Nieuwe transformatiefactoren zijn afgeleid. De iso-schadegrafiek

zoals gebaseerd op de Druk-Impuls techniek is onder-zocht als middel buiten het geldigheidsgebied

van de~ TLF.

Met behuip van de verkregen resultaten kunnen de invloeden van de verschillende parameters een-

voudig onderzocht worden.
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LIST OF SYMBOLS

F = force [N]

x = deflection [im]
N

k = stiffness Im-An]

n = exponent of deformation characteristic H]
W = work done U]

E = energy [U]

U = internal energy [I]

m = mass M

t = time [s]

p = pressure [Pa]

0 = time constant Is]

A = surface [m2 ]

I = impulse [N.s]

M = momentum [kg.m/s]

C = constant

T = natural vibration period [s]

S= natural circular frequency [rad/s]

DLF = Dynamic Load Factor H
f = natural frequency [Hz]

v = velocity [m/s]

a,b,c = fit constants

I = length [m)

w = width [m]

t* = equivalent thickness [m3/m 2 ]

TfTkTm = transformation factors H
u = distance coordinate in length direction [ml

H = bending stiffniess of a beam [N.m 2 ]

a = time factor H
tp = phase duration of shock wave Is]

s = shape factor of shock wave []

fx(u) = deflection shape as function of distance coordinate H

fp(u) = pressure distribution as function of distance coordinate H
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fx(t) = centre deflection history as function of time (-]

D N = damage number

RF = Reflection factor -

subscripts

m - maximum

ms - static

c - according to centre

be - bending elastic

bemax - bending elastic maximum

bp bending plastic

me - membrane elastic

memax - membrane elastic maximum

mp - membrane plastic

mpmax - membrane plastic maximum

e - external

i internal

d - inertia

r - retarding

p - potential

k - kinetic

s - specific value (divided by surface area)

f - free field or incident property of shock wave

rel - relative

+ - just more

beam - concerning beams (1 D structures)

crit - critical value
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INTRODUCTION

The response of structures loaded by a dynamic (transient and/or steady state) load is often consi-

dered as a Single Degree Of Freedom (SDOF) problem or a one-spring-mass system. This simple

approach enables the scientist to perform a quick analysis and to gain insight into the influence of

the parameters.

In the Weapon Effectiveness group of the TNO Prins Maurits Laboratory, SDOF models are used

to analyze the vulnerability of structures to blast loadings originating from internally or externally

detonating warheads in air or water. The structure can be a part of weapon platforms like aircraft,

shelters and ships. For ships, the SDOF technique is applied for the internal blast code

DAMINEX, for the external blast algorithm CBD, for ship door research and for the research of

underwater shock on the hull.

Although many aspects of SDOF systems are described in (Biggs, 1964) and (Baker, 1979),

research continues on these SDOF systems particularly for the application on stiffened panels. The

reason is that such structures subjected to explosion loads are commonly related to large deflections

which introduce the non-linear membrane mechanism besides the regular bending mechanism.

The purpose of this report is to investigate and rank some general aspects of structural dynamics for

SDOF systems. Furthermore the SDOF technique is applied for some commonly used structural

elements.

The structural response is expressed in general terms for force, stiffness and mass for stiffened

panels to study parameter influence. Analytical formulae will be derived for the maximum dynamic

response. The user is made aware of the situations in which the derived formulae can be applied.

Furthermore the relation between the maximum dynamic deflection and the static one is examined

via the so-called Dynamic Load Factor (DLF). This factor is very important, as the designer is

mostly familiar only with static loads. This factor has to be extended to non-linear mechanisms.

Finally, the relation of SDOF systems with the so-called Pressure Impulse (P-I) technique is inves-

tigated. The P-I technique is used for the external blast CBD algorithm and is a suitable tool for

vulnerability assessments of structures and components.

In a report to be published soon (Keizers, Erkel, 1992), the research on SDOF solutions for the

bending and membrane mechanism of stiffened panels will be given more specifically.

The response model based on SDOF equations for the stiffened panels will be validated by the
Dutch 'Roofdier' trials and by a comparison with FEM results.
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2 DEFORMATION CHARACTERISTICS FOR STATIC LOADS

In structural analyses, a structure is often generalized to commonly known elements, such as

beams, plates and shells etc. If a static load Fms is applied, a plate, for example, will deflect or

deform into a certain shape. The deflection in an arbitrary position of the plate can be related to the

centre deflection xm by means of a deflection shape, see Figure 1. This deflection shape is influenced

by the load distribution and the boundary conditions. For dynamic loads, the shape also depends on

the pressure-time history and the mass distribution. The complete solution for these systems

involves multi degrees of freedom. By employing an approximate deflection shape, the response

problem for structures can be made a single degree of freedom SDOF. If the structure is composed

of several parts each one having its own chosen deflection shape, the solution again becomes a multi

degree of freedom.

LP\W

HXm

Figure 1 Transformation of structure into a one spring mass system

For structures under dynamic load, the first modal shape can be used as an approximate deflection

shape to deal with the actual structure as a SDOF structure. But on many occasions a more simple

deflection shape is chosen because modal shapes cannot always easily be determined or can only be

expressed by unmanageable mathematical functions. So, often it is assumed that the structure will

take the same deflection shape as in a static condition under a uniformly distributed load or as a

simple harmonic function.

For the transformation of the actual structure, which is first assumed as a SDOF system by means

of one deflection shape, into a one-spring-mass system with a SDOF, see Figure 1, transformation

factors have to be applied, see paragraph 3.5.
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In this report, uniformly distributed loads will be emphasized, i.e. structural elements loaded by a

pressure which does not vary over the surface of the element. However, the presented solutions will

not change due to non-uniform pressure distributions, only the distribution of the pressure must be

input into the transformation factors.

For structural elements, a typical load-deflection (Fms-xm) or deformation characteristic can be

defined. This is the expression which relates the static load (Fis) to the static centre deflection (xm)

via the stiffness of the structure:

n(Fms Xmn *k (1)

where n is the exponent of the deformation characteristic and k is the stiffness or spring constant of

the structure.

Now some deformation characteristics will be considered, where the exponent n has a certain dis-

crete value. A plate or a beam can develop two resistance mechanisms, the well-known bending

mechanism and the membrane mechanism. Both mechanisms will start elastically and will become

plastic for larger deformations (xm). Notice that sometimes these deformation characteristics can

occur together.

Bending

First the bending mechanism is considered which is based on shear forces and bending moments in

the lateral direction of the loaded structure. Two parts can be distinguished in this mechanism, see

Figure 2:

1) linear elastic deformation (elastic bending beam), n =1.

2) retarding force or plastic deformation (e.g. complete plastic bending beam), n = 0.
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Fbemax .......
F =k x

xmbe Xbp

m

Figure 2 Elastic and plastic bending deformation characteristics

In the case of a plastic bending beam there is a non-linearity due to material properties; a so-called

physical non-linearity.

Membrane

Secondly, the membrane mechanism is considered which also consists of two parts. This mecha-

nism is based on longitudinal stretching of the panel, which is induced due to axial non-movable or

partly movable supports. It is a geometrically non-linear mechanism. The deformation characteris-

tics can be derived by determining the deformation energy for a thin plate and are shown in Figure

3. For a formal derivation and formulae see (Keizers, Erkel, 1992).

3) elastic membrane, n = 3.

4) plastic membrane, n = 1.
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FmPmaxp

Fins Fmp= k
FmP

Fmemax
[F =k mme me m 2

Note: kmp Fmeix m k mem

x xXme mp

Figure 3 Elastic and plastic membrane deformation characteristics

The stiffnesses k are different in magnitude and dimension. They depend upon length, stiffness,

cross-section, yield limit etc, and can consist of several terms.

It should be noted that in this report all formulae are derived with respect to the maximum deflec-

tion, but in fact the maximum strain is more interesting for determining the remaining capacity of

a structure. Although the strain can be always related to the deflection, it is not proportional to

deflection. From deflection - strain relations it is shown that for the bending deformation character-

istic the strain is nearly linearly proportional to xm, while for the membrane deformation

characteristic the strain is proportional to Xm2 .
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3 DYNAMIC STRUCTURAL RESPONSE

The main difference between static and dynamic response is that during dynamic loading the

applied load varies with time in such a way that the arising inertia forces on the structure cannot be

neglected. As a consequence, the centre deflection, xc, is time dependent with a maximum value of

Xm:

Xc = Xm • fX(t)

3.1 General principles

In the following paragraphs some general techniques will be discussed as a basis for SDOF

response.

3.1.1 The energy equation

According to the first law of thermodynamics, if energy is supplied to a system this energy con-

tributes to the internal energy of that system. In this report the system is bound by a conservative

spring, a non-conservative spring and the mass. The energy supply related to the boundary of the

system consists of work done by external forces (We) only.

So, We = t5(internal energy). Furthermore the internal energy is defined in terms of kinetic energy

of the mass, and deformation energy of the springs, while the starting internal energy is set to zero.

Evaluating this, the conservation equation of energy, which is valid at any time of the response, can

be written as:

We = U + Ek (2)

where: We : work done is the line integral of the applied load over the covered way = JFe(t)dxc

Ek: kinetic energy1 of structure = m

U deformation energy composed of potential energy and/or heat increase.

Note that kinetic energy is a positive scalar while work done depends on the

history and can be negative.

S. . .... . ... .. .. ... .t !
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The kinetic energy can be calculated by the opposite of the work done by the inertia forces1 :

Ek= -JFddxc

The potential energy can be calculated by the work done by the conservative forces (elastic) Mn the

spring: fFpdxc

The heat increase can be calculated by the work done by non-conservative forces (plasticity, friction

etc.) on the spring : fFrdxc.

Both terms of the deformation energy are combined here in one term which can be calculated by the

work done by the internal taken force of an arbitrary spring type which can consist of several defor-

mation or velocity characteristics: U = J"idxc = Fpdxc + JFrdxc.

In this report, only undamped systems are regarded because for real structures the damping will

have only minor effects on the first maximum response. Therefore velocity characteristics are not

considered.

Parameters are defined as:

Fe : external forces (surface force)

Fd : inertia forces (body force)

Fp :potential forces taken by the structure

Fr : retarding forces taken by the structure

Fi : internal force taken by the structure

m : lumped mass

xc : centre deflection

3.1.2 Deformation energy

The deformation energy is defined as:

U = Fi dxc (3)

Inertia force is defined as the opposite of the resultant F of all forces (internal

and external) acting on the mass, so Fd = -m .
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For the determination of the internal force, use can be made of the deformation characteristic where

the taken force equals the external force for static conditions. For the given deformation characteris-

tic (1) it follows:

Fi = k • xcn

This results in:

= 1_lk n+l
U =-k - cn1(4)xc n+l Xc

For the deformation energy at the maximum deflection, xc can be simply replaced by xm which

occurs at time = tm.

It is possible to address combined deformation characteristics for the total deformation characteristic
of a structure: Xk• xmn like an elastic-plastic response or a response based on bending and mem

n=0

brane. The integrated deformation energies can be simply added to each other (if it is allowed for the

physical behaviour):

UxC= k 1- -xcn+I
I n+l

n=O

The deformation energy coincides with the area below the Fms - xm curve, either for a single

deformation characteristic or the total deformation characteristic.

For many structures, the stiffness 'k' and the exponent 'n' of the deformation characteristic are not

known. It is sometimes possible to determine them from equilibrium considerations. A more conve-

nient and direct way to determine the deformation energy U is the use of the energy expression based

on the stress-strain curve:

U = f a8g

Vol
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This can be worked out for the four mentioned deformation characteristics of the bending and

membrane mechanism, see (Keizers, Erkel, 1992).

3.1.3 Equation of motion

The energy equation (2) cannot simply be used for the determination of a response solution. The

reason is the work done: We = JFe(t)dxc, where xc is the response of the system dependent on mass
and resistance function. It is evident now that the work done depends not only upon the external

forces in time but also upon the properties of the system itself. Therefore the work done can only be

solved directly in a very few cases (see paragraphs 3.2 to 3.4).

To get a more convenient expression, the energy equation is written as an equation of motion. For

this purpose Lagrange's equation is used. So, Lagrange's equation is merely a device for writing the

equation of motion rather than a method of solution.

This equation can be derived by several principles, e.g. the principle of virtual work. This means

that for an equilibrium situation, the work done by the external forces during a virtual deflection

8xc must be equal to the work done of the internalI forces during that virtual deflection:

"We + 6Wd = "Wr + SWp

dWEvaluating, see (Biggs, 1964), these expressions with the relation 8W = 8 xc it is found for one

generalized coordinate xc that the equation of Lagrange gives:

d dEk~ dEk dU dWe(5
f - + = (5)

Notice that the first term of Lagrange's equation covers all velocity dependent terms and the second

term all displacement dependent terms. For all cases considered in this report, the kinetic energydEk
consists only of velocity dependent terms, hence the second term d = 0.

Note that for the external work done the forces on the mass are considered and
for the internal work done the forces on the springs.
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Applying Lagrange's equation to the expressions of the energies and work done, the equation of

motion can be derived1 for the given deformation characteristic:

m' ,c+k'xc = FeWt (6)

For the SDOF applications a similar method is often used:

The energy equation (2) can be differentiated with respect to time:

dWe dU dEk
-&= + -t (7)

and We is transformed into fFe(t)-&-- dt.

This technique also delivers the equation of motion when it is applied to the energy expressions and

xc is cancelled (it is principally not zero).

The equation of motion (6) deals with the o contrary to the equation of conserva-

tion of energy (2). This is very convenient while deformation energies of the total deformation

characteristic which do not change, disappear, reducing the equation length. This also means that

the equation of motion can be only derived for the actual deformation characteristic of a resistance

mechanism (bending, membrane, etc.). This leads to a set of enuations of motion with a change at

a certain deflection criterion. Still deformation energies of different resistance mechanisms can be

incorporated.

If the load-time history, Fe(t), is given, a solution of xc(t) can be determined either analytically or

numerically with the equation of motion2 .

The equation of motion can also be derived from equilibrium considerations
(d'Alembert), but for real structures the energy method is more powerful,
convenient and consistent because the energies can be integrated over the
structure.

2 Basically, the energy equation might be used as an equation of motion (based
on velocity) for a numerical solution. But this is not efficient with respect tc
the number and nature of the terms in the equation.
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In this report, only analytical solutions are considered. Complete analytical solutions only exist for

the linear case where the exponent of the deformation characteristic is 1. However, there are some

situations where solutions also exist for non-linear deformation characteristics. These situations are

the impulsive and quasi-static loading realms or a combination. For a solution in this situation direct

use is made of the general energy equation (2) instead of the equation of motion. These situations

are frequently referred to in this report.

3.1.4 Dynamic Load Factor

It appe.,s that some load time functions, e.g. shock wave, steady state vibration, the maximum

dynamic deflection, can in general be expressed as the static deflection multiplied by a factor:

xm = DLF- (8)

where Xms is the static displacement as result of a static load with the magnitude of the peak of the

dynamic load Fm. The ratio between the dynamic deformation and static deformation is called the

Dynamic Load Factor (DLF). This factor indicates the amount of reaction (xm) to the applied peak

load (Fm).

3.1.5 Static solutions

If the dynamic load factor is known, the maximum dynamic response (xm) is derived from the

calculated static deformation as result of the peak load, multiplied with that dynamic load factor.

One is usually familiar with calculating the static deflection. Whei. the exponent of the deformation

characteristic is known, the work done by the static load can be calculated:

Wems =f Fmsdxm -- I- Fms* xm
n+ 1

and according to the general energy equation (2) this should be equal to the deformation energy

U(xm) because the kinetic energy is zero for static problems.

L _ _ _ _ _ _-
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For real structures, the exponent of the deformation characteristic is not always known. To get still

a static solution, many 'energy methods' are available 1 . The following convenient method is used

here.

The 'total (potential) energy is defined as:

U(xm) - Fms * xm

Notice that the last term is not the work done by the external load which has to be minimized by

differentiation to xm, and set equal to zero.

To determine the static deflection as a result of a statically applied peak dynamic load, use is made

of these principles and the expression for the deformation energy (4). This results in:

n -Fm
xms k (9)

Combination of (1), (8) and (9) results, for the virtual static taken force:

Fms = DLFN. Fm (10)

It is important to notice that for a combination of deformation characteristics, a static deflection can

also be derived with the mentioned principle. Applying this for the combined deformation energy

(see paragraph 3.1.2) results in:

Fis = kn * Xmn

n0U

The static deflection can be extracted from this equation. So, the external force for static conditions

is simply the addition of the resistances of tho different deformation characteristics for the static

deflection.

Note that if the equation of motion already exists for a given problem, the

static solution can be simply obtained by setting the acceleration to zero.
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3.2 Impulsive loading realm

The response lies in the impulsive loading realm if the duration of the applied load is very short

compared with the response time of the structure (e.g. structure loaded by the blast wave from an

externally detonating HE charge), see Figure 4.

force

xc(t) xm

0 t=0+ t=tm time

Figure 4 Impulsive loading response

For determining the maximum dynamic deflection, Xm, the conservation of energy equation (2)

will be used.

The deformation is small (with respect to the maximum deformation) when the loading has ended.

This implies that the deformation energy at that time (i.e. t=O+) is negligible, i.e. U = 0, hence

Wet=0+-= Ekt=0 +. This means that We has attained a constant value when U=0 and remains

constant throughout the whole period because We = fFe dx. This yields: We = constant:

U + Ek = constant (11)

This equation is a special shape of the general energy equation (2) and it also yields for non-

conservative forces, but it is only valid if no external work (We) is done.

When U only consists of conservative forces, Fp, the equation is known as the equation of conserva-

tion of mechanical (kinetic and potential) energy.

At the moment of maximum (tin) deformation xc = xm where Ek = 0 it follows:

Ut=tm = ,kt=0 + (12)

- -tI
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The deformation energy is given in paragraph 3.1.2.

The kinetic energy increase for the free body motion in the impulsive loading is, according to the

energy equation (2):

fFe(t)dxc m dx]

which has to be worked out.

However, it is easier to use the overall Newton's second law for the determination of the maximum

kinetic energy given the load-time history.

dM
F =• A(m vm) = JF(t).dt (where M =Momentum)

which is the impulse balance of the free body motion of the mass.

Impulse of pulse load is defined as I, it follows for the maximum velocity vm and starting condition

v =0:

II= JF(t).dt -+ vm=*

From the expression for the kinetic energy it follows:

12

1+ 23)

3.3 Quasi-static loading realm

If the time constant of the applied load (0) is very long compared with response time, the loading

may be considered as quasi-static (which is the opposite of the impulse load). This means that when

xm has been reached, the load has not changed significantly (e.g. nuclear explosions at long

distances), see Figure 5.

__ 1
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force

Xc(t) Xm

0 t=tm -- time

Figure 5 Quasi-static loading response

Only in this case can the work done by the applied load (We) be solved because Fm is independent

of Xc

Xm

We = (Fm dxc = Fm Xm (14)
t=tm

To determine xm (Ek=O) the expression for the quasi-static loading realm is derived from the

general energy equation (2):

we = u()

t=tm t=tm

3.4 Combined loading realm

In some cases, one can distinguish an impulse and a quasi-static load in an external load time

history, e.g. the loading on a heavy concrete wall during an internal detonation.

When the external force Fe does not change in time and is of a conservative

nature, this force can be considered as a conservative field force. This means

that in fact also for a quasi-staic loading the general conservation of energy

equation (2) can be directly written as the equation of conservation of

mechanical energy (11) while the work done by the conservative field force can

be expressed as a change in potential energy.

- VI
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Again from the general equation of energy (2), the maximum deflection xm can be calculated. The

work done consists of the work done by the quasi-static force and the work done by the impulse load,

the latter is the initial kinetic energy. The energy relation becomes:

12

Fmxm + - = Ut=tm (16)

This expression is not applied further for any deformation characteristic because its evaluation is

very similar with the other loading realms.

3.5 Transformation factors

For the application of all derived formulae in this report, neither the entire mass, stiffness nor force

of a real structure can be used. These values must be multiplied with so-called transformation

factors which depend on the deflection shape of the beam or plate and on the distribution of the

external pressure. This can be imagined clearly if for instance the mass of the beam is considered. A

part near the centre will be subjected to a higher velocity than a part near the supports.

Although the main purpose of the formulae in this report is to present formulae for a parameter

study, the transformation factors will be mentioned for reasons of completeness.

The transformation factors are defined as follows:

Load factor: Tf = F/Fbeam where Fbeam is the real force on the beam

Stiffness factor: Tk = k/kbeam where Fbeam = kbeam.xmn for static load Fbeam

Mass factor: Tm = m/mbeam where mbeam = p.l.w-t*

where w = width

I =length

t* = equivalent thickness is volume per square metre

p = density of material

The factors can be determined by deriving the energy terms for the real structure and comparing

them with the energy expressions of the one-spring-mass system.

-t
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The transformation factors for a one-way or beam1 structure can be determined, where the deflec-

tion and pressure shape are defined as follows:

x = xc • fx(u)p = PC • fp(u)

where: fx(u) = the deflection shape as a function of distance coordinate

u = distance coordinate defined along the length of the beam

fp(u) = pressure distribution as a function of distance coordinate

PC: = peak pressure of distribution (mostly at centre deflection)

It follows now:

Fbeam = w. f Pc.•(u).du
0

The deformation and kinetic energies, and work done per unit width are determined for the beam

and compared with those for the one-spring-mass system in Chapter 3.

Work done by external forces

WeIw = f Fe/w

Work done on small part du of the beam is:

wewe (du f Pdudxc f Pcfýp(u) du f(u) dxc

Beam in this context does not mean only bending action but structures with a

deflection shape in one direction only.
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Work done on the whole beam:

e Pc fp(u) fx(u) dxc du

J fp(u) fx(u) • du Jf Pcdxc

The work done of the one-spring-mass system is:

f Fe dxc

which must be equal to the work done of the beam.

With Fe = Tf. Fbeam it follows:
I I

J Tf-wJ Pc fp(u)du dxc = wJ fp(u) fx(u)duJ Pcdxc

Tf is fully determined now.

Kinetic energy

Ek Fd d 7m d (d XS= Fd/ w dx t)-• dx=

d ( dxdxc (dxc =S t* p du (- -F-)dx = t* J p fx2(u) du--d- ad

t*.p I (d c -- fx2 (u) du
I (dXI<(d(

The kinetic energy of the one-spring-mass system is -m[ ---- which should be equal to that of the

beam. With Tf-mbeam m it follows:

1 (dxcw I (dxc 1
Tm - p, . * I. w - wt' 2- fx2 (u) du

Tm is fully determined now.

-i
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Deformation energy

The deformation energy of the one-spring-mass system for the maximum deflection is (see

paragraph 3.1.2):

U 1 kxmN+

With k = Tkkbearn and Fbeam = kbeam xmN it follows for the deformation energy of the statically

loaded beam

U = A-iTk w , Pc fp(u) du xm

which should be equal to the static work done on the beam, see paragraph 3.1.5.

With

kbeam N
PC f- 1 Xm

w j fp(u) du

it follows for the static work done on the beam:

I ~ I.
Wems - Pc xm w fp(u) • f(u) du

Evaluating these expressions it appears that Tk Tf. In fact this is not surprising given the fact that
N I Fbeam

Xm K - Kbeam
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it is important to notice that for a combination of deformation characteristics, the definition for the

stiffness factor does not change. The expression for the static beam force becomes then:

Fbeam = nkn-xl'tn and all stiffnesses kn have to be multiplied by the stiffness factor Tk. This
n=

statement agrees with the statically taken force, see paragraph 3.1.5.

Note, however, that the change of the deflection shape may not have the same influence on the

change of the stiffness kn for the different deformation characteristics.

If the factors for one-way structures are summarized, they yield:

J fp(u)-fK(u) du

Load factor Tf = Stiffness factor Tk = (17)

J fp(u) du

Mass factor Tm = fx2 (u) du

It can be shown that all deflection expressions for the quasi-static loading realm can be directly

applied because the Load factor equals the Stiffness factor, which is very convenient. This is not the

case for the impulsive loading realm or for all other response formulae where the transformation

factors have to be input.

For the determination of Vm (see page 21) also the transformation factors should be used for the

impulse equation:

Tkj Fbeamdt
=- Vm Tm mbeam

And the kinetic energy becomes (equation 13):

1 2

Ekt=o+ 2 Tm m beam.x +2tO

S
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It should be kept in mind however that the calculated velocity at the end of the impulsive loading

realm do not well match reality. This is caused by the fact that just in a very early stage of the

response the deflection shape deviates largely from the asssumed statically deflection shape. The user

should be aware of this possible mismatch which leads amongst others to a difference between the

impulse of the shockwave and the momentum of the beam.

If the expressions for the work done, the deformation energy and the kinetic energy are input in the

Lagrange's equation, an equation of motion arises for the whole beam. This equation can be rewrit-

ten as:

Tm n-m mbeam - xkc + kbeam • xc = Fbeam(t)

So, for the equations of motion, only one transformation factor is needed: the Mass factor Tm

divided by the Stiffness factor Tk.

In (Biggs, 1964), a set of transformation factors is worked out and presented for only uniformly

distributed loads.

4 SOLUTIONS FOR LINEAR DEFORMATION CHAIRACTERISTIC

The linear deformation characteristic is very important. It forms the basis for many elastic calcula-

tions.

The well-known equation of motion for this type of structure follows from equation (6) with n = 1:

mtc+ kxc = Fe(t)

which will be solved for a load-time history Fe(t) from a shock wave load.

4.1 Taylor wave loading

The pressure time profile of a free field or incident shock wave in water and air can be rather well

expressed by the Taylor shape which has the form (see Figure 6):

p(t) = Pf - e-t10
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where: Pf is the incident peak pressure, and

0 is time constant of the applied load (Taylor shape).

Pf ----

i f.e-t/e
p(t) = P f .e

Pressure

t=o time

Figure 6 The Taylor shock wave

For a one-dimensional reflection in air, the loading on the structure has exactly the same time

profile; only the peak pressure is increased with a so-called reflection factor RF. The resulting

loading on the structure is now:

Fe(t) = Fm. e-tt0 (18)

where Fm is the peak force = Pf. A * RF (A = surface).Fm
The peak pressure on the structure: Pm - = Pf" RF

The impulse of this force is:

I = 1 F(t) dt = Fm'O (19)

I
The specific impulse on the structure is: Is = JP(t) dt = Pm0 =I

If 0 is long compared to the structural response time, the quasi-static loading realm results. If 0 is

short, th.t ...pulsive loading realm results.

S. . . . .. .. . ... ... .... ... ...... .- 0



TNO-report

PML 273488295 Page
3D

4.2 Complete loading realm (from impulsive until quasi-static)

The equation of motion can be solved as follows. The homogeneous part of the solution can be

written as: xc(t) = Cl.cos(ot + C2.sinwt. When this solution is put in the equation o motion for a

free vibration it follows:

0) - natural circular frequency T [rad/s] (f

T - natural vibration period Is]

Assuming that the particular solution can be described by xc(t) = C3.e-ti0, and inputting this in the
Fm

forced equation of motion, yields: C3 k

0

Finally, the general solution is composed of the two parts and for starting conditions, xc 0 and

dxotdt = 0, it can be written:

Xt) Fm I /,no te- t.--)

Xc(t)= 1 .t- cosart + eo)0-jJ(20)K 1+ TW-- 0-)

xc(t)

The results of this equation are depicted in Figure 7 where for F/-k the •O influence can be clearly

detected.

Note that the time of maximum response will increase for increasing values of toO.

2.0.

ft.o /W.Q - 300

W.Q - 20

W.Q =0.7

-1.0

-20I I I i i

0 1 2 3 4 5 6

w. timeIC

Figure 7 Comparison of the influence of the o).O factor on the response of a linear spring
mass system loaded by a shock wave with a constant peak force

---~~~~~ ... ---- t --- ----
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xc(t) gets a maximum at tm as dxc(t)/dt = 0, which yields:

co~tm
cos o).tm + co.O-sin (wo-tm) - e o-0 = 0 (21)

The parameter co.tm can be established from this relation for a given coo value, which is regretfully

of an implicit nature. Putting the wo.tin values, which can be numerically found, and the according
xm

C(A value into the solution for xc(t), the maximum relative deflection, FUIk can be found.

In accordance with paragraph 3.1.5, this yields, for the static deflection of the linear deformation

characteristic as a result of the statically applied peak load Fm:

Fm
Xms -

This means that in accordance with the Dynamic Load Factor definition (paragraph 3.1.4)

DLF - Fm for the linear case (22)Frn/kbe

It appears that from equations (21) and (20), the DLF can be solved if only the 0o0 value is

known, see Figure 8.

-U
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I • • EXACT

2.0 - 2nOD FIT
-I T FIT

0
U 1.6

a

0

0.4-

0.6-

0.4-

0 0 ID0 15 20 25 30 35 40 45 S0

OMGGAwTETA
PesponfE sPECTRUm Ann TWO APPROXImPTIOrS FOP An ELASTIC BEAm

LOADED BY A TOYLOr SHOCK WA.E

Figure 8 Response spectrum and two approximations for an elastic beam loaded by a Taylor
shock wave

In general, it can be stated that for the linear deformation characteristic, the DLF depends only

upon the natural frequency w of the structure and on a characteristic time of a certain loading type.

For the Taylor wave this is the time constant 0. A general plot of the DLF is schematically given in

Figure 9. This important curve is only valid for a linear elastic deformation characteristic.

quasi-static
loading realm

2 .0 -- - - - - --, - - - - -
d i

DLFdynamic
loading

impulsive
loading

0 realm

Figure 9 Dynamic response curve for linear deformation characteristic
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In (Biggs, 1964), DLF-like curves for the bending mechanism (elastic and plastic) are given for

four types of loadings other than the Taylor wave, including the time of maximum response.

DLF can be solved explicitly only for two specific cases. These two cases, the impulsive and quasi-

static loading realms, respectively, have already been mentioned in Chapter 3 and are depicted in

Figure 9. For determining the maximum deflections xm and the corresponding DLFs, the analyti-

cal solutions (20) and (21) can be used for the linear deformation characteristic only, but to show

the principle, the derived energy methods in Chapter 3 will be used.

4.3 Impulsive loading realm

From the xc(t) solution (20) it appears that for a impulsive loading realm: xc = Xm~sinft, see

Figure 10.

Figure 10 Impulsive loading response for linear case

For the deformation energy, use is made of expression (4) for the maximum response:

1 2
Ut=tm =I kbe x2

The kinetic energy can be derived from formula (13) and the impulse of the Taylor wave (19):

Fm.9  (Fm • 01 2
V Ekt=0 + 2m

-
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For determining the maximum dynamic deflection xm, the derived principle (12) is used.

Substituting the above-mentioned results, leads to:

Xm (impulsive loading realm) (23)

1 1
Note that in contrast to the static loading, xm is proportional to instead of-

Using o2 = and I= M = Fm0, xm can also be written as:

vm
xm =-

(which agrees with the time-differentiated time shape of the response) or in the DLF shape with

respect to the static deflection xms:

xm = (0 0 F (24)

Apparently, in comparison with equation (22)

DLF = (0a. (25)

This realm is the left oblique asymptote of Figure 9 for a Taylor load and will be used from

0 < o0•0 0.30, where the maximum error in DLF is +4.3%.

4.4 Quasi-static loading realm

1
From the xc(t) solution (20), it appears that xc = xm j(1 - cos0)t), see Figure 11.

S~1 !
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Fe(t*

T/2
Xc(t)

T/2 - P time

Figure 11 Quasi-static loading response for linear case

Substitution of the corresponding expressions into the derived principle (15) yields:

1 2 Fm
Fmxm =Ikbexm -),xm = 2F

Apparently, the dynamic load is twice the applied static load, or, in comparison with equation (22),

the dynamic load factor

DLF = 2.0 (26)

This realm is the horizontal asymptote in Figure 9 and will be used for the Taylor load for

o,0 > 30, where the maximum error in DLF is +5.2% and is usually called the quasi-static loading

realm.

4.5 Application of transformation factors

To show the usefulness of the transformation factors, they are applied for a case of the linear

deformation characteristic.

A beam is considered loaded by a sinusoidal pressure distribution along its length and a sinusoidal

deflection shape:
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fx(u) = fp(u) = sin--

By using the mentioned expressions or the transformation factors it can be found:

Load factor Tf = Stiffness factor Tk = 74

Mass factor Tm = 1/2

These constants have to be multiplied with the entities of the beam before using them in the

formulae presented in this report. The impulsive loading realm for the linear deformation character-

istic is considered:

Fm TfXm= °O)Gie T

It seems that xm can be directly calculated because 1, but the natural frequency has also to be

considered.

= Tm--mbeam

For a simple supported beam under sinusoidal deflection shape, the stiffness can be derived by

determining the bending deformation energy given the deflection shape and using the techniques for

static response. The stiffness is:

3
kbeam =q- .2.EI

When all the expressions are substituted in the natural frequency equation, they result in:

wbeam = 15
-'z_ pow° t*
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which is exactly identical to the classic value for the first natural frequency of a simple supported

beam. This is not surprising because the chosen deflection shape and load distribution are compara-

ble with the conditions of a beam in the first natural vibration.

4.6 Approximation of DLF curve

Because the linear elastic deformation characteristic is commonly used for design purposes, an

explicit function for the whole DLF-aO range is desired.

The following convenient approximation has been found:

DLF a c (27)

For the Taylor wave, numerical approximation yields: a = 2.0, b 1.68 and c = 1.04.

The accuracy of this approximation is excellent, see Figure 8. When o0 is small, then the equation

DLF = O)0 evolves, and when W)0 is large, then DLF=2.0 evolves, which are both in agreement

with the theoretical impulsive and quasi-static loading realms, resprcsive!y.

For some applications such as deriving scaling laws, further simplifications are needed. The Taylor

DLF-o0 relation was then approximated by the following relation:

DLF = a ((O)b

(Note that a = 1, b = I for the impulsive loading realm and that a = 2.0, b = 0 for the quasi-static

loading realm.)

As a further simplification, the response curve has been approximated roughly between the two

asymptotes: 0.5 ! wO _ 20. From a least square approximation, the constants a and b were found

as:

a =0.85 and b=0.29

This approximation turned out to be inferior, see Figure 8.
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However, with respect to the scaling of one shock wave to another, a different approximation can be

used. Scaling in this context means to get an equal maximum dynamic deflection xm of an identi-

cal structure for two Taylor shock wave loadings, Basically,

Fm
xm = constant = DLFP

Xm2

xmSo, the ratio M2 = 1, or DLF2/DLF1I = FmlI/Fm2 where Fml/m is constant (independent

from A0). This results in the requirement:

bEDLF21 [DI.F91 =[w1)l2
Dar, J 0L-IFj L 1.,o

exact approx

where b minimizes the sum of all the relative errors, given by:

r -L__ b
NDLFi~

Ere] DLFi /
L DIF J

Computations showed that the minimum error Ere, occurred for b = 0.32.

Substitution of some values of o0) in the above-found approximation indicated that this approxima-

tion was still not satisfactory. The errors found were in excess of 30G/.

However, when a piece-wise approximation was used for the DLF-0)O curve based on this tech-

nique, the errors were reduced significantly. The curve was approximated in four parts, which are

listed in Table I, including the values for b that were found by the numerical method.
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Table I Piece-wise approximation of DLF ratio curve

Region O0-range b Type of loading max. error mean error
[P/6 Ml

I 0 - 0.55 0.948 approx. impulsive loading 5.3 1.8

11 0.55 - 2.0 0.632 dynamic loading (1st part) 6.0 2.1

111 2.0- 10.0 0.270 dynamic loading (2nd part) 6.7 2.6

IV 10.0 - 200 0.045 approx. quasi-static loading 4.5 1.8

It must be noted that for an arbitrary load applied to the DLF-o0 curve in regions I and IV,

approximately the same value for b as for the Taylor load is found. The other regions, however,

have to be redefined with respect to 00 resulting in different values for b.

A plot of region II of the curve is depicted in Figure 12.

FIT

24

C, 4,

* L4

() "0 1 S 2.0 2.5 3.0 3.5

(OFMhule), /(Of.-)
' POTl 1) (IT Ii! r * [*) l•FPI•o()xil•fnlT1)1 FOn nEG.O1l 2 OFA P EPOOIE SPECTV4_m

Figure 12 Ratio plot and approximation for region H of a response spectrum
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SOLUTIONS FOR NON-LINEAR DEFORMATION CHARACTERISTICS

For non-linear deformation characteristics (n> 1), the equation of motion (6) cannot be solved

analytically for the Taylor load.

Therefore the maxirmum deflection xm or the DLF cannot be found in the whole range from the

impulsix e loading to the quasi-static loading realms. Due to the non-linearity in the deformation

characteristic, the peak load Fm appears in the response relation in a different way for the different

realms. Also it is not possible to determine a natural frequency while the time of maximum

response depends on the load.

However, solutions for the mentioned deformation characteristics (general, bending, membrane and

combination) can be found for the impulsive and the quasi-static loading realm with the aid of the

derived principles (12) and (15), respectively.

5.1 Arbitrary deformation characteristic

For all single deformation characteristics in the two loading realms, an expression can be found

which has the shape of a DLF times the static deflection as result of the peak load.

A general function for this DLF for an arbitrary value of the exponent (n) of the deformation char-

acteristic can be simply derived using the general deformation characteristic equation (I) and the

general expression for the DLF equation (8) in combination with static resulting deflection

according to (9).

5.1.1 Impulsive loading realm

Applying the impulsive loading realm principle (12) yields:

1 n+l 1+ 2
n-- k "X -M 2m

2 1

xm= in+1 ( l n+l 

(28)

T,2.m -k ) ] (28)
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and

DLF =:(1') nZ+n. (I- n+1ii-TI
F m

In the impulsive loading realm, the maximum deflection xm is only governed by the impulse of the

shock wave. This is important, because the maximum deflection is independent of the peak pressure,

decay constant and the shape of the shock wave; only the impulse of the shock wave determines the

loading (from this impulse the maximum velocity or kick-off velocity, thus kinetic energy, of the

structure is directly related). The impulse does not necessarily originate from a shock wave. Every

pressure-time profile with equal impulse delivers the same deflection in this realm.

The impulse loading, I, from a general reflected shock wave can be expressed as

I = Fm-tp.S (29)

The parameter tp is the phase duration of the shock wave and the factor s relates to the shape of the

shock wave. For the Taylor wave, tp = 0 and s = 1. Given this equation, a more general expression

for the DLF can be found:

1 1

DLF = ( n•m)n2 +n. (Fm.tp2.s2 n+1 +1 (30)

As can be seen, only for R linear case, i.e. n=l, does the peak load disappear from the relation which

agrees with the relation derived earlier for the linear case.

5.1.2 Quasi-static loading realm

Applying the principle (15) for the quasi-static loading results in:

1 n+1
ii+ kxm z Fmxm -
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xm n (31)

This yields:

DLF = 1rjjf- (32)

So, DLF can vary between 1.0 and 2.72 for a quasi-static loading.

5.2 Plastic deformation characteristic

5.2.1 Impulsive loading realm

First, the plastic deformation characteristic is analysed separately from the elastic prehistory which

is justified when the plastic deformation dominates.

Only the impulsive loading realm is considered for the plastic deformation characteristic of the

bending mechanism because a quasi-static load would result in infinite displacements (n=O) if the

applied load exceeds the plastic resistance force (Fbp). On the other hand, no deformation will occur

if the quasi-static load is smaller than Fbp.

For the impulsive loading realm, the internal work done can be written as:

U = Fbp" Xmt~tm

Applying the impulsive loading realm principle (12) yields:

xm 1 b (Fm > Fbp) (33)

It can be written: xm = constant.I
2
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In fact, if Fm > Fbp, the equation of motion becomes the free body motion for the whole loading

realm with:

F(t) - Fbp
m

and

x(t) =Ji(t) dt= Fm • (t + O-e-t/O - -Fb 2•

where the maximum deflection occurs at time where i(t) = 0 which follows from the criterion

Fbp e- e and where t can be determined from t = a.0

Fm -a

5.3 Elastic membrane deformation characteristic

The plastic non-linear deformation characteristic can be regarded as a plastic string and it is compa-

rable with the linear elastic deformation characteristic. Also a kind of natural frequency can be

defined.

For the impulsive and quasi-static loading realms of the elastic membrane mechanism, n=3, an

expression for xm can be found, using the relations for the arbitrary deformation characteristic.

5.3.1 Impulsive loading realm

Putting n = 3 into equation (28) leads to:

xHece = 1.th i s = c onsta (34)

Hence, for the impulsive loading realm: xm =constant ,T"
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Using equation (29) and (30) yields, for the DLF:

(ke0.1. 2 0.25
DLF = ,TI (Fm) (m-Fm ' (35)

5.3.2 Quasi-static loading realm

For the quasi-static loading realm, the application of (3 1) yields:

F 1/3
xm = 1.5[9 (1.59 "-4) (36)

and from (31):

DLF = 1.59

5.4 Combined deformation characteristics

For combined deformation characteristics, the total deformation characteristic is composed of several

single deformation characteristics: nIk-xcn see paragraph 3.1.2.

n=0

5.4.1 Deformation energies

Until now, the plastic part of the deformation characteristic has been dealt with separately from the

elastic part. In practice, the plastic part is preceded by an elastic one.

For the bending beam, the elastic phase is followed by the formation of plastic hinges which finally

yields to a deformation characteristic with a constant retarding force (strain hardening is neglected

for the dynamic situation). To derive the combined elastic-plastic response, the terms for the defor-

mation energy U, for plastic deflections, can be simply added:

Ut=tm = Fbp.(Xm-ixbe) (Bending) (37)

-i-- .(endng
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It follows for an elastic-plastic response for the membrane mechanism:

Fmemax 12 I
Ut=tm = 23 j XI2 m jFmemax xme (Membrane) (38)

Even the bending and membrane action can occur together. For instance, large deflections in a stiff-

ened panel induce membrane forces in the plate while the stiffeners can still act as bending elements.

In such a case, the two deformation energy terms (bending and membrane) have to be added and

the maximum deflection xm can be solved analytically. It should be kept in mind that the value for

the plastic bending force is only based on the stiffeners. So, Fbp reduces with respect to the bending

mechanism only.

For large plastic deformations, the plastic energy dominates and the elastic can be neglected, which

yields, for the combined bending and membrane action:

Ut=tm Fmemax xm2 + Fbp~xm (Bending and Membrane) (39)

5.4.2 Impulsive loading realm

For the impulsive loading realm, it follows, for the maximum deflection of the elastic plastic

bending mechanism by equating the deformation energy with the kinetic energy (12):

12 1
Xm= 2.m.Fbp + 2xbe ifI > Xbe. -YJkj-em (40)

and for the elastic plastic membrane mechanism:

Xm= m xme +2"lme ifI Xme2. 2 -- m (41)x q- max +~me

-T.
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The impulsive loading realm for the combined plastic bending and plastic membrane mechanism

reads:

Xm= Fbp2 Xre 2 12 xme Fbp xme (42)
Fmemax2  Fmemax Fmem e4

5.4.3 Quasi-static loading realm

The solutions for the maximum dynamic deflection can be calculated with the aid of the energy

principle expressed in equation (15).

For the elastic-plastic bending mechanism, it follows:

Xbe I 1
Xm = T° Fm if eFbp< Fm<Fbp (43)

Note that for Fm = • Fbp, it follows xm = Xbe which agrees with a DLF = 2.

For the elastic plastic membrane mechanism, this results in:

Xme max2•) Fmemax4
XmmF* (Fm + Fm2 + I Fmemax2 if Fm > F (44)

For the quasi-static loading realm of the combined plastic bending membrane mecnanism, this

leads to:

2 .Xme
xm =Fmema (Fm - Fbp) (45)

5.4.4 Static solution

The static force, Fins, can be simply determined from the minimization of the total potential energy,

as was stated in paragraph 3.1.5.
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d
6F (Ut=tm - Fms-Xm) = 0 --

m

Fms=Fbp+ Xmem"x (46)

5.4.5 Survey of maximum deflection expressions

The derived solutions for the elastic-plastic bending and membrane mechanism and are summa-

rized in Table II.

Table II The maximum dynamic deflection, xm, for two loading realms

mechanism deformation impulsive loading quasi-static loading
characteristics

elastic I Fm
Xm -'kbem Xm = 2m

BENDING
elastic-plastic 12 xbe 1

Xm= 2"m'Fbp + 2xbe Xm= 2 Fm

ifI > xbe- ,kem if Fbp < Fm < Fbp

elastic 1 1/3
Xm= .9 em Xm= 1.5fk_•ei

4kmeem
MEMBRANE

elastic-plastic i 2Xme ÷ 2 xm-FXmem=+ xme
Xm= miFmemax y me

fI> me2m (Fm + Fm2 + Fmemax2
if I > 1_ '2 X m 2 . 4 k• ' - m

Fmemax
ifFm > 4



TNO-report

PML 273488295 Page
48

6 PRESSURE-IMPULSE DIAGRAMS

6.1 General description

The DLF-o00 curve can also be transformed into a so-called P-I diagram, see Figure 13. The differ-

ence is that the DLF-wo diagram shows the displacement as a function of relative time ((o0), while

the P-I diagram shows the required combinations of I(mpulse) and P(ressure) for a given deflection

(valid for a typical structure), e.g. the displacement where the yield limit is reached. Curves in this

P-I diagram may be called an iso-deflection or iso-damage curve, because it connects points having

the same deflection. These curves are often used in relation to the damage due to explosions, there-

fore the two typical parameters of a reflected blast wave are used, i.e. the peak pressure Pm and the

positive specific impulse Is.

Note that for structures loaded by a uniformly distributed pressure of a reflected shock wave:

Pm= Fm/A and Is = I/A.

I-asymptote

Pm

pM crit

a

1.0 . --------------------------- P-asymptote

1.0
ISuit

Figure 13 Iso-deflection curve in a P-I diagram

When scaling explosive charges to obtain equal displacements, this curve may be very suitable. Any

point of a combination of Pm and Is under this iso-deflection curve will stay under an allowable

deflection, and any combination above the curve will lead to unallowable damage.
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6.2 Approximation of an iso-deflection curve

The iso-deflection curve can be ap2roximated by a hyperbola as:

P It- 1 ' - 1]a (47)

mcrit Iscrit

For the linear deformation characteristics and the Taylor wave it is known that:

kbe adkbeIscrit = XmcrtoAand Pmcrit -Xmcrit2oA

Fm
With xm = DLF-- and Is= Prm 0 it follows:

Is t -0 and Pm 2
Isci-t - DU and mcrit DLF

and xm is a certain arbitrary centre maximum value.

For the interception of the hyperbola and the bisectrice (point 'a' in Figure 13) it yields:

Pm/Pmcrit = IS/Iscrit -* 0 = Iscrit /Pmcrit = 2.0/o

With the w0 information from the point of intersection 1 , the DLF can be found and the constant 'a'

of equation (47) could be defined.

However, this is done by comparing all points (instead of one point from the intersection) with a

numerical fit. To this end the iso-deflection curve can be transformed into a DLF--O diagram and

equation (47) can be written in closed form as:

DL= +I{oiO - V(o)0)2 -WO)(4-8a) + 4 }(48)
D(-a)

Note that this is the same value for 0 as the point of intersection in the DLF

curve of Figure 9.
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If this equation is approximated with respect to the actual DLF-(oO curve, a maximum error of

only 1.8% is found for a=0.74, see Figure 14, where the exact and the approximated P-I curves are

given. The hyperbola suggests symmetry around the Pmcrit and Iscrit asymptotes, which is not

exactly true. Also, the approximation using the hyperbola for values close to the asymptotes, is less

than the explicit DLF-(o0 curve fit suggests. This is inherent to the way the P-I diagram is

constructed.

The hyperbola can be rearranged by multiplying with Pmcrit*Iscrit into:

(Pm - Pmcrit)*(Is - Iscrit) = a Pmcrit ' Iscrit = a xmcrit 2o'A 2

Applying this to a single structure, i.e. kbe and o and A are gaual, then:

2
(Pm - Pmcrit)'(Is - Iscrit) = const (49)

expcr
In ympt ote

8-

7

0..

0 1 2 3 4 F, 6 B q 10

I/Icrri
*-DBTFLECTIOf3I (P-t) CUNvIE B-PD on- I¶Ppnoximi3Ion Fpon :n 1LPTIC BAM

LOP3DED Sv Pi TPYLOn &HOCK UJIVE

Figure 14 Iso-deflection (P-I) curve and an approximation for an elastic beam loaded by a,
Taylor shock wave
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(Held, 1983) postulates that equation (47) can be simplified by neglecting Pmcrit and Iscrit into:

2
Pm -Is = Pm'(Pm"0 ) = Pr20

However, neglecting Pmcrit and Iscrit can lead to unjustified use, because the last expression is valid

only for limited cases, where the dynamic part of the DLF curve is approximated and the two

asymptotes of the impulsive and quasi-static loading realm are neglected.

Another problem is the introduction of a so-called damage number which is equal to:

DN = (Pm - Pmcrit ).(Is - Iscrit ) (50)

wheie the damage is equivalent to a certain critical deflection, i.e. DN + xm.

In (Held, 1983) it is suggested that when the critical deflection is doubled, the corresponding

damage number will double as well, which would yield a new relation for a certain deflection.

However, the statement that DN+xm is valid only when scaling for both the same structure and the

same Xm, because for different xms DN + xm 2 was derived for a linear elastic deformation

characteristic, see (49).

For the other deformation characteristics, an iso-deflection curve can be derived, deqpite the fact that

an analytical expression of xm= DLF.xms does not exist.

For a non-linear deformation characteristic, a P-I diagram can be derived only by means of numeri-

cal integration. This diagram has virtually the same shape as for the elastic deformation character-

istic. Hence, as an approximation a hyperbola can be used. For the elastic membrane mechanism,

the hyperbola constant 'a' = 0.6 (instead of 0.74 for the linear elastic characteristic). This curve is

valid for all deflections (xms). This seems odd, because large deflections due to a large loading are

reached sooner than small deflections due to a small loading. This is a result of the non-linearity of

the structure where it behaves stiffer for larger deflections. The reason that a single iso-deflection

curve may still be used, is that the displacement does not appear linearly in Iscrit and Pmcrit. The

values for Iscrit and Pmcrit can be determined from the expression for the deformation energy (4)

for the elastic membrane n = 3, and the energy principles (12) and (15). They appear proportional
2 3

to xmcrit and Xmcrit, respectively.

Also combined deformation characteristics can be dealt with by the P-I technique in an approximate

way. From the derived principles and the deformation energies, the expressions Iscrit and Pmcrit can

be established analytically. The hyperbola constant 'a' has to be determined by solving the equation

of motion and is only valid for that specific xmcrit, see (Erkel, 1988).
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7 CONCLUSIONS

- General techniques on structural dynamics are ranked and considered.

- Analytical formulae for the maximum dynamic deflection of SDOF systems have been

determined for the impulsive, dynamic and quasi-static loading realm.

- A general expression for the Dynamic Load Factor (DLF) has been derived for both linear and

non-linear deformation characteristics. This factor relates the maximum dynamic deflection to

the static deflection.

- The Pressure-Impulse (P-D) technique is considered with respect to applications beyond the scope

of the DLF curve.

- For the transformation of beam structures to one-spring-mass systems, factors have been

derived. These so-called transformation factors incorporate the influence of the deflection shape

and the loading shape, which is a new feature.

- Convenient mathematical approximations have been found for the response curves.

- The derived formulae can be properly used in problems where an equal maximum dynamic

deflection is required for different loading conditions and for parameter studies of structural

response problems.
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